![多传感器数据智能融合理论与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/842/41309842/b_41309842.jpg)
2.3 多传感器数据融合中的卡尔曼滤波理论
2.3.1 卡尔曼滤波简介
针对传感器信息的跟踪滤波算法,大多数工程技术人员会选用卡尔曼滤波算法。卡尔曼滤波算法是R.E.Kalman在1960年发表的一篇著名论文中所阐述的一种递归解算法。该算法在解决离散数据的线性滤波问题方面有着广泛的应用,特别是随着计算机技术的发展,给卡尔曼滤波提供了广泛的研究空间。卡尔曼滤波器是由一组数学方程所构成,它以最小化均方根的方式,来获得系统的状态估计值。滤波器可以依据过去状态变量的数值,对当前的状态值进行滤波估计,对未来值进行预测估计。
一个离散的线性状态方程和观测方程如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_01.jpg?sign=1739583995-ewoFj6865i73Y1ebLunwIoZxU7Qff9vM-0-eeeea55a07d24bc3fd50ededf8a2517e)
其中,X(k)为状态向量,Y(k)为观测向量;W(k)为状态噪声,或称为系统噪声;V(k)为观测噪声。假定W(k)和V(k)为互不相关的白噪声序列,分别符合N(0,Q)和N(0,R)的正态分布。
系统噪声的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_02.jpg?sign=1739583995-36sgADghKNLoNmjMJiBlPK2DlBrnTieS-0-b42f66e4a8dd4e904bf87735d9209098)
观测噪声的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_03.jpg?sign=1739583995-JlH0DW64SGpXGXmyn2IHqpgiOxcnWyn6-0-d7461610a43d14079dce04f3910ddde1)
卡尔曼滤波器就是在已知观测序列{Y(0),Y(1),…,Y(k)}的前提条件下,要求解X(k)的估计值,使得后验误差估计的协方差矩阵P(k/k)最小。其中
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_04.jpg?sign=1739583995-Nrx7zdMSE8XGAkrzWLnhQ0UJsxgUPqz7-0-d6571f4af4261358be169807a3938c25)
在式(2.5)中,e(k/k)为后验误差估计,它可以由下式求得:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_05.jpg?sign=1739583995-SF8NxcbporxqQYYlQ0hBIDqjUEq0daIv-0-5a6a7fa5048d0df64ec8191ffccf112e)
定义先验误差估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_06.jpg?sign=1739583995-ez1uyz3sXAsaf4J1cbOXdkwZAnfUyCmG-0-afc17f92b92c0093f2a9b357b29d2e4d)
可以得到先验误差估计的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_07.jpg?sign=1739583995-FVIJoNUui9TOmDoycpjR1Zz1FtMxvXkP-0-af4aa68f432b72380a8e2cc4b437de32)
假定卡尔曼滤波的后验估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_08.jpg?sign=1739583995-g5GCZBHYTgY9jUky6wmwxh14arq8xj9m-0-9340c85a6227be05b1b242a1b2cf72ad)
将式(2.9)代入到式(2.6)中,得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_09.jpg?sign=1739583995-l7as6gkqzlRE6g0SsgwYIx7cyqTmmUZt-0-c78820120b66c2a430d84b85d48b9943)
将式(2.10)代入到式(2.5),可得
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_10.jpg?sign=1739583995-EyZHTZzbnVizyOTEBmx97y9FENi3e4jK-0-586fbb3c7f33071d42b0df4cd378f188)
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_01.jpg?sign=1739583995-fkFYIUcJl5iZYhxm1hy10wg3ASs3BJUr-0-d33511a96a5af8cd58d5fee5d936e551)
假设:随机信号W(k)与V(k)与已知的观测序列{Y(0),Y(1),…,Y(k)}是正交的,则有E[W(k-1)Y(k-1)]=0,E[V(k-1)Y(k-1)]=0。
式(2.11)可以化简为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_02.jpg?sign=1739583995-VU0kpNRwgmHNcsXzihUs0vmEjXDRmrDE-0-3305051bba6d8509531837f67378b20f)
对式(2.12)求导,并令其为零,可得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_03.jpg?sign=1739583995-LKfU49hzgtlAapvHwuY1dMohKjm60czl-0-d494474a40a958309cc464f7faf804d6)
同理,可得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_04.jpg?sign=1739583995-TFvHP9JgA7YWCUY6pSNVcOzE9GtzvOBP-0-023d21364526db922025e13d427e079c)
因此,可以得到状态估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_05.jpg?sign=1739583995-XJoYBoJcfafYK7HVFeCW46VTaICOeoT9-0-ad881db4e8fb2b701cb9bdc87154b5a0)
状态预测估计为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_06.jpg?sign=1739583995-vKNFjbYTQm54PpwlTWkIjEwplQ3tInr0-0-83389f67a57c0b2e2ce3a803750c02c2)
进一步计算得出误差的协方差矩阵如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_07.jpg?sign=1739583995-liF2u0GsQP27M4h5t1QeEyLA0qiLmXax-0-ab5198b2edc372575616a583ed54d0f6)
由此可以获得卡尔曼滤波的递推公式如图2.7所示。
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_08.jpg?sign=1739583995-wIhvcFtIDSKVQdBHyK5kJiMJEeok7taz-0-c7751fcc0c94e475db37b523680383b3)
图2.7 卡尔曼滤波的递推公式