![五年制高职数学(第三册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/610/31729610/b_31729610.jpg)
上QQ阅读APP看书,第一时间看更新
12.4 极限的运算法则
本节重点知识:
1.极限的运算法则.
2.运用极限的运算法则求函数极限.
定理 如果当x→x0时f(x)和g(x)的极限都存在,且,
,则
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00044005.jpg?sign=1739315528-WFOAo3eumh0vJfD0KcMaXeT8ma0YQrRv-0-3ecd1171d157005103581aae81433a4a)
例1 求下列极限:
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00044006.jpg?sign=1739315528-SIHSWW4yuGjvAPhmh1Y1ys6u6iUGEY1L-0-b0c001fd8aaa03c962c6b5a7125a3a4c)
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00044007.jpg?sign=1739315528-kIYLkJEjtoV918HGh9Vno62l8GJgc9QE-0-075f1837e1e42710f57420c76d5e4553)
例2 求(1); (2)
.
解 (1)x→3时,分子、分母的极限都是零,所以商的极限的运算法则不能应用,但是
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045003.jpg?sign=1739315528-dZiBFsjUrwHH5eCPPqsdWjCYGWjmILqq-0-cf7d9c2f101f3ce2c895933bd459542c)
分子、分母有公因式(x-3),在求x→3的极限时,要求x≠3,所以x-3≠0,
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045004.jpg?sign=1739315528-g7dqZfGa3HhQfwUgsC9YTRbyI57ksBrr-0-fe5d15872811ce5281ff7427b23e5b50)
(2)这个极限与(1)类似,x→0时,分子、分母的极限都是零,所以商的极限的运算法则不能应用,但是分母有理化之后
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045005.jpg?sign=1739315528-M5YZo0j3fsyDA9Q9ot7FRte4GNdQcL05-0-0fc7c90d6404abdfd0bb805cb8a71545)
分子、分母有公因式x,求x→0的极限时,要求x≠0,从而
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045006.jpg?sign=1739315528-LBh00mC0zb2gg4v0ZK1JUYY7rTY2xvsE-0-f82ccbfd34e53d4ea08b0d7effe283f1)
例3 求.
解 x→1时,分母的极限为零,分子的极限是-1,商的极限的运算法则不能应用,但其倒数的极限
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045008.jpg?sign=1739315528-sPsOv5fZzU56HM9gGi8VpD37quFNnRiK-0-efe1591545f74e9eb592e255baf09baa)
利用无穷小与无穷大的关系可知 .
想一想
如下写法是否正确?
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045010.jpg?sign=1739315528-Eqrghf8vsr4MevndWE0Vq25FGyst1MVw-0-9f8498471db762db629e022ee1ebb13a)
例4 求下列极限:
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045011.jpg?sign=1739315528-rglD08MiNlFlZ5j431UTpMJsfEBKULtD-0-a2f5818061a05b2e33525bccd9f47b88)
解 (1)先用x3去除分子及分母,然后取极限
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00045012.jpg?sign=1739315528-VrhQPpAqdr4dtxRUsXej52ExwXzzw5eX-0-b1a9b91674312af08d9e2c6f21680aa6)
(2)先用x3去除分子及分母,然后取极限
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046001.jpg?sign=1739315528-TgnYIlyeGQNpLaIo8CUAtj9yhWvXUlLg-0-10107dbc4fadb28a484fc1c6c55ae654)
(3)由(2)可知
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046002.jpg?sign=1739315528-zzpUSTCTxp4hTxZLjyZGRPFZu8oozr15-0-5b2cfd3a3e4b173ec6541c9704cf0fe7)
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046003.jpg?sign=1739315528-zYLT6Br9UOSYN6KgkvLWWZqo0e1Qlb6a-0-bda6fea7db63150b87e3da63d81e5330)
讨论:有理函数怎样求极限?能得出那些结果?写出你的结论
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046005.jpg?sign=1739315528-JK9gV8puZOPBFJSylauv3Eg3K2Dg51BD-0-33341bdb0a951f5072ee00c86c98d060)
例5 求.
解 当x→∞时,分子及分母的极限都不存在,故商的极限的运算法则不能应用,因为,而
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046008.jpg?sign=1739315528-MYf4WumS5Z8HYCjgdzkSjYpX6PU85DPm-0-54e8130c4005ff185a8ee173e90cc82f)
利用有界函数与无穷小的乘积仍为无穷小,得 .
注意
(1)运用极限运算法则时,只有各项极限都存在(除式还要分母不为零)才适用;
(2)如果所求极限呈现 或
等形式,不能直接用极限运算法则,必须先对原式进行恒等变形(约分、通分、有理化、变量代换等),然后再求极限;
(3)利用无穷小的性质以及无穷小与无穷大的关系求极限.
想一想
如下写法是否正确?
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00046012.jpg?sign=1739315528-P4r3nOwGwwa3RBhTyGLljul7VyAUOguW-0-7fadb992b1fd5d3776a42cb35a91930d)
例6 求,设函数
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00047002.jpg?sign=1739315528-oI2bETgBSUpkoGA11qpVF8kQtPT6VhiB-0-5b682f97b6f8d358592a70ecf218ead9)
解 求x→1的极限时,要求x≠1,所以
![](https://epubservercos.yuewen.com/49DD8E/17180252104501606/epubprivate/OEBPS/Images/img00047003.jpg?sign=1739315528-q18wMtKopHVyoteJNkdfqKtbKE317BV1-0-5d607afeb783e24bf63803eacaa37f0e)
例7 如果,求
解 因为当x>4时,,所以
;而当x<4时,f(x)=8-2x,所以
;左、右极限存在且相等,所以
.
例8 求.
解 ,
,左、右极限不相等,所以
不存在.