![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/549/31729549/b_31729549.jpg)
上QQ阅读APP看书,第一时间看更新
1.3 极限的运算
1.3.1 极限的运算法则
定理 设函数f(x)和g(x)在自变量x的同一变化过程中(x→x0或x→∞)的极限分别为A和B,简记为limf(x)=A,lim g(x)=B.则
(1)lim[f(x)±g(x)]=limf(x)±lim g(x)=A±B;
(2)lim[f(x)·g(x)]=limf(x)·lim g(x)=A·B;
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022001.jpg?sign=1739414372-Dpbskz1mO0gHGshpVvr2DAoX4A3PPONH-0-aa6b861541df4784c1a95289e79a1ade)
其中(1)和(2)可推广到有限个函数的情形.而且(2)还有如下两个推论:
推论1 lim[C·f(x)]=C·limf(x)=C·A,其中C为常数.
推论2 lim[f(x)]n=[limf(x)]n=An,其中n为正整数.
例1 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022003.jpg?sign=1739414372-qzbICNgLJ0NaXM271KnLUNdrfOKOCFLi-0-f28a16793c0fe4dd5ec21c53ff56a8bb)
例2 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022013.jpg?sign=1739414372-sBjvmhgHq01yK36t70oBDD0edGyiApvM-0-6a0c6b981a3e11e37d52982add3948b5)
例3 求 .
解 当x→∞时分子和分母都趋向于无穷大,不能直接用法则(3).我们可先将分子和分母同除以它们的最高次方幂x3后,再求极限.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022004.jpg?sign=1739414372-iOd7UlYXSu7a4GYLKhZbLzbf2b0AoKio-0-4593cb7172f6b166d2d2e8985ceb5e0b)
由此不难证明:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022005.jpg?sign=1739414372-OtrdVJAQmRzYkjZE4loHmUtGYj2htwjY-0-6f566de9b81b5a6c54fc79e2b4b34140)
其中a0,b0均不为零.式(1.9)可作为公式使用.
1.3.2 两个重要极限
在函数极限的计算中,下面两个极限起着重要的作用(证明从略):
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022006.jpg?sign=1739414372-uSRRYt4vtIfBrdG0njt4O9bNQNTH5MBb-0-230197f066479164c139b114a7601c7d)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022007.jpg?sign=1739414372-KQsUPj8qzMqf2WmhvR77KdcwcDltOYjS-0-12c76ad6464fe49e585a4b203a03e174)
其中e≈2.71828,是一个无理数.以e为底的对数记为ln x,称为自然对数.
例4 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022009.jpg?sign=1739414372-xDaq4s8cJqnflYW54R88N6HdTTzesChj-0-c4ec0cc9567baa0c2a9016fff86e55aa)
例5 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022011.jpg?sign=1739414372-FSp4oEWM6dRHdHJuF7fx9d8AUhxJ3UTA-0-795730cdee6512dd5954f4fca3b5d394)
例6 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00023002.jpg?sign=1739414372-tC0CyJqLx20yIuLhqRGmScxkYRtutK3E-0-40b139df17c7666b0dad291dcf37a696)
例7 求
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00023004.jpg?sign=1739414372-vmOtc0rR63YTZGXzg58WXBb2OvAu2pgT-0-aa74a470dfda9eb604f192c99ca43ac5)
例8 求
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00023006.jpg?sign=1739414372-JeV48cXMthr0nAhaYyswpnHDmKYpXrSY-0-819a09dbc5dccc5003388f1439c90332)