![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/549/31729549/b_31729549.jpg)
上QQ阅读APP看书,第一时间看更新
习题2
1.函数平均变化率与x和Δx有关吗?瞬时变化率
与x和Δx有关吗?在平均变化率取极限的过程中Δx是变量还是常量?x是变量还是常量?
2.设函数f(x)在x0点可导,且f′(x0)=k,计算:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00044012.jpg?sign=1739054662-8MEFFKuo9924LZZdkBOr1fRprVaVDe6i-0-ecc1747c198fe8c0c78a7df3d9990ec8)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00044015.jpg?sign=1739054662-2AW7ckwyfR6mwLDx8v2n87eBXx5HaQh2-0-7351c412c3ed0fc36c8d6dbf3458f113)
3.按定义计算下列函数在指定点的导数:
(1),在点x=0处.
(2)f(x)=3x2-x+4,在点x=0处.
4.讨论下列函数在x=0处是否可导:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00044014.jpg?sign=1739054662-J5whIhRUIYHlxvMDBbUFfHSlKD9xEI5B-0-c506b47d1ddd0ffdf575c561f33d2112)
5.设函数.试确定a,b的值,使f(x)在x=1点处既连续又可导.
6.求函数f(x)=x3在(1,1)点处的切线方程与法线方程.
7.求下列函数的导数:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045002.jpg?sign=1739054662-uOwFEMOE51o7s66npoRSq2HafbtJsgqF-0-b1cd640a2ffcb8a9aad0512f874daa3d)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045003.jpg?sign=1739054662-0pifJ1MNUpB78WDgCV9o30QVuCegF2mn-0-d6faec3792574316c46e067a683b75d6)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045004.jpg?sign=1739054662-1zZ0UeCQjX6ayEOgpOOnMFziIyuJB9rl-0-88c28483f4e3cf3b09165d55e395eebe)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045005.jpg?sign=1739054662-9sYMZN6rt3N7Y0obojNQSJQmzqwCG5UN-0-b30aaeb4dd72caae570760a42ecf8de2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045006.jpg?sign=1739054662-fiFF8ujgS9IOASATXQhL0lZ0v3lMofqS-0-dce1200e0ccd3a60956a8f00ee40624e)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045007.jpg?sign=1739054662-WJemxZ7iwPvtBFKR1wslJQYZjPLul6vj-0-c39c7de7e2fab6ec3e0d68d1b450d678)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045008.jpg?sign=1739054662-6kkkKEQZJfpXRUDxi5f2U6uFvjmWdoQa-0-8e6e80be93fc9f36f5054fce945e7a67)
(15)y=arcsin(2x2-1)+ln 2. (16)y=(tan x)sin x.
(17)y=(sin x)cos x. (18)y=xlnx.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045009.jpg?sign=1739054662-JvGjuuxHC7lprj3TvRRPzvGti10Xv8rv-0-90538d223e88a58868d5deaf4b724d23)
8.求由下列方程确定的隐函数y=f(x)的导数.
(1)y=1+xey. (2)y=tan(x+y).
(3)x3+y3-3axy=0. (4)xy=ex+y.
9.方程xy-ex+ey=0确定y是x的隐函数,求y′|x=0的值.
10.求下列参数方程所确定的函数的导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045010.jpg?sign=1739054662-4Y2Fc7t4qBFs2kdnrLL2E5A0GcRA60jh-0-8859a4030a0abe319d0e047c3c8c5c7c)
11.求下列函数的二阶导数.
(1)y=eax. (2)y=lnx.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045011.jpg?sign=1739054662-ofbvaW0nw6dTfsUJYbjFMWfEq25EtR6y-0-7465fdcc61806b47212d3a826e836744)
12.求下列函数的微分.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045012.jpg?sign=1739054662-prUwkI09nd6aKzpV38nrO0vggx4Dc2Js-0-3547bde98b368b2d75bc510aeb2662c5)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045013.jpg?sign=1739054662-m3zqJ4E6LJQhzecsNXPaBOtgSDKOX8Bq-0-32e532433d57e410daf51048881699d5)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00045014.jpg?sign=1739054662-ax0kjZHMh8g2cohMQpubFBgb3jELzAke-0-620117608ea222c595476ae34b8c7df4)
13.利用微分近似计算.
(1)sin 29°. (2)(1.05)3.