![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/549/31729549/b_31729549.jpg)
2.2 导数的运算
根据导数的定义,求函数y=f(x)的导数f′(x)可分为三步:
(1)求增量Δy=f(x+Δx)-f(x).
(2)算比值Δy与自变量的增量Δx的比:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032006.jpg?sign=1739415291-Ve98Yoy7xkU6V6xzZOa0kclPXG5L6Q6y-0-a61d2a7f31a391e029c0748da1c32f9c)
这个比值称为函数的平均变化率,又称差商.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032007.jpg?sign=1739415291-NIlem5cVSdJU9XEavmIK1WJ5V4OIYrJ0-0-51e4977b139b745d5e52aa5c2a5c97e1)
若此极限存在,则此极限值就是函数f(x)的导数f′(x).
下面我们根据导数的定义,求几个基本初等函数的导数.
2.2.1 一些基本初等函数的导数
1.常量的导数
设函数y=c,因对任何x,有y≡c,显然Δy=0,所以,即
(c)′=0
2.幂函数的导数
设函数y=xn(n为正整数),给x以增量Δx,由二项式展开定理有:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033001.jpg?sign=1739415291-37AeGGG0SSQqTAK3rczJCqxFTeVpYSL8-0-a0c31f49ae8f0bb7c4566b8d552a7e9a)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033002.jpg?sign=1739415291-C7oZvBWGlWI2xTovxUmmfWbTbkx7bHh3-0-5cbbb21d1a1b87177a19505cf3598286)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033011.jpg?sign=1739415291-u2A0CnLiMCev2AEs9CJi4q8KIDaI6XNv-0-0e8467f0ef443e33b85ba9acd16ec9e5)
即 (xn)′=nxn-1
当n=1时,上式为 x′=1
即自变量对其自身的导数等于1.
更一般地,对于幂函数y=xa(a为任意实数),有
(xa)′=axa-1
这就是幂函数的导数公式,此公式的证明将在后面讨论.
3.对数函数的导数
设函数y=logax(a>0且a≠1).
给自变量x以增量Δx,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033003.jpg?sign=1739415291-UkuQ1BiCEdUbSxs7QbGq3xohJwAyGOrq-0-08a9e7df0478087622ea24836d775848)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033004.jpg?sign=1739415291-P88pQtyxcgULp1mzz4PcQviKbs2SEviN-0-424d605954d474ddb1bcad5cb433065e)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033005.jpg?sign=1739415291-ChGk10DIGCJvjHCtfQvmfa7s1spBkYCd-0-7411904bbd14cf1419905ef42b3a0fd3)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033006.jpg?sign=1739415291-TlSFd5Xz1Y5ExM3lmqiLjjLb30AntMtu-0-255249e39bac4067e73ad85aaa4a1aac)
特别对于a=e,则有
4.正弦函数和余弦函数的导数
设函数y=sin x,给自变量x以增量Δx,则Δy=sin(x+Δx)-sin x,由三角函数的和差化积公式,有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033008.jpg?sign=1739415291-pUw0nh6irQRqdsPVbUcpR7BOU65oOdFR-0-472e4f0f037f705db69e761fc3314c03)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033009.jpg?sign=1739415291-G32JwkiEN3uB5xeJgqYOq0wX4ZiQrhOP-0-0f6e73624da431484ac08766692e371e)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033010.jpg?sign=1739415291-jg5BSNOn3rIWDj0cUu1dZINDv3bAcYSU-0-6031871c2117135b54e58c6e24137fda)
即 (sin x)′=cos x
同理可证 (cos x)′=-sin x
2.2.2 函数四则运算的求导法则
设函数u=u(x),v=v(x)在x点处可导,即u′=u′(x)及v′=v′(x).
法则1 两个函数的代数和的导数
(u±v)′=u′±v′
证明 设y=u±v.给自变量x以增量Δx,函数y,u,v的增量依次为Δy,Δu,Δv有
Δu=u(x+Δx)-u(x)Δv=v(x+Δx)-v(x)
Δy=[u(x+Δx)±v(x+Δx)]-[u(x)±v(x)]
=[u(x+Δx)-u(x)]±[v(x+Δx)-v(x)]=Δu±Δv
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034002.jpg?sign=1739415291-hvKT6cRvpQ20oMbyQ6k8p2mkphTd9Sst-0-7736a3bdfbdbbf487c51d00cf18dac77)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034003.jpg?sign=1739415291-NAH7hxNKdKNMRoxOIAn1qHNBn2MQWaIQ-0-b5f7adf8ce37c7b31e4264d588b9c309)
即 (u±v)′=u′±v′
此法则可推广到有限个函数代数和的导数情形,例如(u+v-w)′=u′+v′-w′.
例1 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034005.jpg?sign=1739415291-oDQsyUGSTuD3TEi8UC5KlYCboHNdywdm-0-fb22e4dc1f404c93bb66e479fb149ffa)
法则2 两个函数乘积的导数
(u·v)′=u′v+uv′
证明 设函数y=uv,类同法则1有
Δy=u(x+Δx)v(x+Δx)-u(x)v(x)
=u(x+Δx)v(x+Δx)-u(x+Δx)v(x)+u(x+Δx)v(x)-u(x)v(x)
=u(x+Δx)[v(x+Δx)-v(x)]+v(x)[u(x+Δx)-u(x)]
=u(x+Δx)Δv+v(x)Δu
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034006.jpg?sign=1739415291-uFpyQwKAMRRE4MmwMgt8pHP6VWgl8gHH-0-12de0dd19ce107ac0d80a3bd4a10142d)
已知函数u(x),v(x)在x点处可导,则u(x)在x点处连续,故有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034007.jpg?sign=1739415291-zLw4m7dVTG2JdLnYMw2ce0q0040GQVwP-0-c36d28874e7a98a018a6e450e629075c)
即 (uv)′=u′v+uv′
推论1 (cu)′=cu′
推论2 (uvw)′=u′vw+uv′w+uvw′
乘积的法则也可推广到任意有限个函数之积的情形.
例2 已知y=ln x(sin x+cos x),求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034008.jpg?sign=1739415291-a0WJjcEtiTAZLt9Uznm7MgJ9dqdMeJX2-0-5d6b775192041d59ec9868cf7266df24)
法则3 两个函数商的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035001.jpg?sign=1739415291-ZSwZ4ydIfrJ70FT96w6ulQ1zbXHCntlZ-0-5d31629096fdfac318278e4819dcf7e1)
推论3
例3 已知函数y=tan x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035003.jpg?sign=1739415291-6YaRlPz9B9IDW60ZxNF1juSD5UbQH2lc-0-b8d453d37acc310c454443e8df1a45be)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035004.jpg?sign=1739415291-AFzngPoYaAizKEk8NKbUbMU9wbr55meY-0-4c26084c454f8502c64973317bb2f99f)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035013.jpg?sign=1739415291-EWousnSaAySldOYhh0VdVRVSW9Ys0G9b-0-c4f6db939d72d5c1c8a0fbf2e28188dd)
例4 已知函数y=sec x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035014.jpg?sign=1739415291-VI7mfu25yXNTHllRG7vqGfEWFhSSKDbT-0-5f6885be5df303ad20ad66c9de9b4c17)
即 (sec x)′=tan x·sec x
同理可求 (cscx)′=-cotx·cscx
2.2.3 复合函数的求导法则
法则4 (链式法则)设函数u=φ(x)在x点处可导,而函数y=f(u)在x点的对应点u(u=φ(x))处可导,则复合函数y=f(φ(x))在x点处可导,且其导数为
f′(φ(x))=f′(u)φ′(x) (2.2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035005.jpg?sign=1739415291-y6SQDboymvj7yucZc3yOhs4tR7ih7mPQ-0-0b15d92f3cafceb266c3f238f4c44ae8)
证明 设x有增量Δx,则相应的函数u有增量Δu,函数y有增量Δy,因为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035006.jpg?sign=1739415291-keUoQCCDDkHL1lXqbl4lxumIGbzO4Yzw-0-82a99ed3666a1562ed2347c6ea860499)
由于u=φ(x)在x点可导,当然在x点连续,故当Δx→0时,有Δu→0.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035007.jpg?sign=1739415291-aqu43rq9Jxp1rjSLeXKcxDA2poaLFL8i-0-05a90a876ece809d19b84927fdcfad03)
此法则可以推广到多个中间变量的情形.我们以两个中间变量为例,设y=f(u),u=φ(v),v=ψ(x).则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035008.jpg?sign=1739415291-pAbPE9ZcXNqtroDMPfPteGeIxWhEbFiK-0-dd9b0c40c72dfd98db21bfb04fb3d4f0)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035009.jpg?sign=1739415291-qLcSp1d1tHASltulUPzHfTE9cFwWXgGu-0-f582c380613b4f46a84905c1a028a893)
故复合函数y=f(φ(ψ(x)))的导数为
例5 已知函数y=sinln x2,求y′.
解 令y=sinu,u=lnv,v=x2,则有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035011.jpg?sign=1739415291-QZgtseEYtu0tmd6xXKeHVxbpr60nOohA-0-dd0d8c7de4c9b0e969d220b8a977041e)
例6 已知函数y=sin8x,求y′.
解 令y=sinu,u=8x,则,
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036002.jpg?sign=1739415291-MHm3xOD9ByVXeFLDDDYRfLJlwfwaZsqm-0-b591c1d71e136df81f26ab450a2f0780)
对复合函数的分解比较熟练后,就不必再写出中间变量。
例7 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036004.jpg?sign=1739415291-bRhvuq2u3HjuWqz3tp1MJnS7cQlo0r4m-0-d340b48ed33bbd74850b5ed42b88f6b9)
2.2.4 反函数的求导法则
为了讨论指数函数(对数函数的反函数)与反三角函数(三角函数的反函数)的导数,下面先研究反函数(inverse function)的求导法则.
法则5 如果函数y=f(x)在某区间Ix内单调、可导,且导数不等于零,则它的反函数x=φ(y)在对应区间Iy={y|y=f(x),x∈Ix}上可导,且
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036005.jpg?sign=1739415291-YRbnT5tMGhS6MKQ1Ascp8y2BSIZSHhLJ-0-6de3141068d58f5c5be7c8632b282ad8)
此定理说明:一个函数的反函数的导数等于这个函数的导数的倒数.
证明 设函数y=f(x)的反函数x=φ(y)在y点有增量Δy,且Δy≠0,有
Δx=φ(y+Δy)-φ(y);Δy=f(x+Δx)-f(x)
当Δy→0时,有Δx→0;当Δy≠0时,有Δx≠0,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036006.jpg?sign=1739415291-V6yUkneHYW9rhVIYUsxMZdwTRrOh3JxQ-0-80cc072feb75746cfa840a562e7e535d)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036007.jpg?sign=1739415291-rcS2oqQd1B2PFvpFybMz4J7w3RzrFJb5-0-7fbd14cca4b1aab2a980151c4ac6ac73)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036008.jpg?sign=1739415291-dSmWBpytWZZI2QfmRN4BcvB40iRsqLIF-0-a3ef72fc5ab6a017f0052ca300d4f3e8)
例8 求指数函数y=ax(a>0,a≠1)的导数.
解 已知y=ax是x=logay的反函数,由
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036010.jpg?sign=1739415291-pjvGpuXlDfWVWunSSDY9C7Fb94vH8zWe-0-088150253a10fd8b4f18f277d3cdb525)
即 (ax)′=axlna
特别地,当a=e时,有
(ex)′=ex
例9 求反三角函数的导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036011.jpg?sign=1739415291-uCYOUojPYxPDRZfhDoVAlBVNxvHh0uaE-0-f7fed02fc8b627706efc3d0fdd8e2ae5)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036012.jpg?sign=1739415291-B6wfxTHaASTMWMQ7iXNSVmTXYzlXdbqc-0-e6a6fda709d6f5f9645592dafb46266b)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037001.jpg?sign=1739415291-9z3oHpPokcayKtucc8sluTodBZKvfXul-0-919fbe6b54a5938cb8531c0eb39794e5)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037002.jpg?sign=1739415291-SyzgSY5yiqYGa4MFoQkHu9cWIN3UfL8R-0-41db4f360e8aafd96da3b8c557085e97)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037007.jpg?sign=1739415291-z9TCd6waqwUo073m1148pTRC9Sox5pk8-0-ea13b8bca9bcb7590a49cb9ca5129a27)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037008.jpg?sign=1739415291-lDPVYJZYVpSnWIjjX1KLqvOLCyDD85zy-0-f5b8968587e9117aac94db53d0e59223)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037009.jpg?sign=1739415291-iQeQgTcJpG9DufIbMV3ZNfV70SU0Z8tk-0-6ed26ad706ed0c464229f8888eb5981e)
用类似方法可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037010.jpg?sign=1739415291-HFC87HGBH9a3yuckV84IaqdFZHHJ3t5q-0-8c9664409b77cf5ca81629399b5103f6)
例10 求幂函数y=xα(α为实数,x>0)的导数.
解 由于y=eαln x,故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037011.jpg?sign=1739415291-pFMWG6luVAXL84R9s7AoIlTRMTLWMxaq-0-cb51df6a8c7d319f024d1260e2a3aa4c)
即 (xα)′=αxα-1
2.2.5 隐函数的求导法则
前面,我们讨论的求导运算都是针对函数y能明确写成自变量x的解析式y=f(x),这样的函数,我们称为显函数(explicit function).但有时遇到两个自变量x,y间的函数关系是由方程F(x,y)=0所确定的,这样的函数,称为隐函数(imlicit function).
例如,x2+y2=1和exy-xy=0都确定了x和y之间的某种函数关系.
求隐函数的导数并不需要将y从方程F(x,y)=0中解出来,亦不需要引进新的法则,只要对方程F(x,y)=0的两边分别对x求导,便得到所求函数的导数.求导时注意y是x的函数,利用复合函数求导法则,便能得到所求函数的导数.
例11 求由方程y3+3y-x-2x5=0所确定的函数y对x的导数.
解 方程两边对x求导
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037004.jpg?sign=1739415291-UWL46G4a9i9HnXB7lx6jJRAmPIV1jvsZ-0-496fdab50fae03a99f46770ec0bfee7d)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037005.jpg?sign=1739415291-N5fS0yjTb02IxOtM7BJDSQQKK2Jjh1ik-0-c9cee72b7a54550cc702269f97f9346e)
例12 求由方程ey=x2y+ex所确定的隐函数y的导数y′和y′|x=0.
解 方程两边同时对x求导,得
ey·y′=2xy+x2y′+ex
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037006.jpg?sign=1739415291-bwsty7ZY6ugFI8j9cZnynnjoQEPjV1y9-0-24a5a7c2fb1524c8782c6f449f2cb56d)
当x=0时,由ey=x2y+ex得y=0,代入上式得y′|x=0=1.
2.2.6 对数求导法
将函数的表达式两边取自然对数,并利用对数性质将表达式化简,然后应用复合函数的求导法则,将等式两边对自变量求导,最后得出函数的导数,这种方法叫做对数求导法.下面通过两个例子说明这种方法.
例13 已知函数,求y′.
解 将等式两边取对数,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038002.jpg?sign=1739415291-LBrxJxJqtJXFJDM7qtSCka8bBp8GoyZv-0-ec2c789739eb50ddf79e68be7faafad8)
对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038003.jpg?sign=1739415291-Be8W3FJv5SlZlJrjfe6sqnZ6kRfTGIzS-0-aa95ca81219069e13c382f5a013c49d5)
例14 已知函数y=xsin x,求y′.
解 两边取对数,化为隐式,得
ln y=sin x·ln x
两边对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038004.jpg?sign=1739415291-DhQTI9PLNqHTH6akOW1boJPEhpR3UP7F-0-45090b08798929d4f18524d105c4fb4c)
*2.2.7 由参数方程所确定的函数导数
当函数由参数方程
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038005.jpg?sign=1739415291-SvJF0QPbz1KHSRMGyD8YyWjT0XqonCaH-0-a507a9674606ec38392059ede7ed701e)
确定时,在不消去参数t的情况下,可以方便地求出y对x的导数 ,过程如下:分别求出y对t的导数
,及x对t的导数
,即得y对x的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038009.jpg?sign=1739415291-hlpVOWhV4cia8UdIAZ3uPrEzOeh6o7JV-0-ea1f664c7b6b28c675c174583c5a7a42)
例15 求由参数方程所确定的函数的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038012.jpg?sign=1739415291-Tg1Cv0NSGSdfHZfwY9CfJjUuwVBpBENB-0-3d31e3805f2d63dc23b3fc6b3a0b2c74)
故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038014.jpg?sign=1739415291-9bJEvoOUTagu8ABSWvlRyRTk4JnecFrl-0-76df27be0a1ffad3698b5176da0cd35b)
为了便于查阅,我们列出基本初等函数的导数公式
1.(c)′=0(c为常数). 2.(xα)′=αxα-1(α为实数).
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038013.jpg?sign=1739415291-Did7i31OwU7AZsuofiJbcwAR5RTnVnTB-0-7d45ac28fbe6b88031611d45c16b2ce8)
5.(ax)′=axlna. 6.(ex)′=ex.
7.(sin x)′=cos x. 8.(cos x)′=-sin x.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039001.jpg?sign=1739415291-KaQxXbDeSZ8UmQr6NMGFCT8pac2EWnDn-0-3bab2d2c4fc6725fb80c84518559ad55)
11.(sec x)′=tan x·sec x. 12.(cscx)′=-cotx·cscx.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039008.jpg?sign=1739415291-QDz4d8nesmFh2OjTsktNfGxJJyOCcEzK-0-bc4f45bf85c7f1da55ebb14d10e4226c)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039009.jpg?sign=1739415291-8cgj35jFSl55lp2KKlTWxdhwDFbgitg2-0-bc23b198d13c7afd044be409b9fb5c31)
2.2.8 高阶导数
函数y=f(x)的导数f′(x)仍然是x的函数,我们可以继续讨论f′(x)的导数.如果f′(x)仍然可导,它的导数就称为函数y=f(x)的二阶导数(second derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039002.jpg?sign=1739415291-t8W9nHQxWEG8tWqd9MRPS5jzBknrfhIE-0-dad5917ccfd9eb96d6a2daf1319c38c6)
依此类推,如果函数y=f(x)的n-1阶导数的导数存在,它的导数就叫作函数y=f(x)的n阶导数(n-th derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039003.jpg?sign=1739415291-udIF6tSTQsDwbKEtxIEZPkOyjERdewur-0-52f46d06097a44f241a809435839c08f)
函数y=f(x)在x点具有n阶导数,则f(x)在x点的某一邻域内必定具有一切低于n阶的导数.
二阶以及二阶以上的导数,统称为高阶导数(higher derivative).
如物体的运动规律(函数)是s=s(t),则s(t)的导数是物体t时刻的瞬时速度v(t),即v(t)=s′(t).加速度等于速度v(t)在t时刻的导数,即加速度为s(t)的二阶导数α=s″(t).这就是二阶导数的物理意义.
显然,求一函数的n阶导数,只需对函数进行n次求导.因此,求高阶导数无需新的方法.
例16 求的二阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039005.jpg?sign=1739415291-CncdrChY9G8rvZQrhmJGTui2YrhUFLtx-0-0e85987f6f7294121d5a611e23acc556)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039006.jpg?sign=1739415291-m7yO9y8JGLDrVKI8J9WTDlFttVK1q1gc-0-b8c31a9ae073eef2adf4ff7cd71e4e40)
例17 求y=ax的n阶导数.
解 y′=axlna
y″=ax(lna)2
…
y(n)=ax(lna)n
即 (ax)(n)=ax(lna)n
显然 (ex)(n)=ex
例18 求y=sin x的n阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039007.jpg?sign=1739415291-eJiIxwHSc4zvpxWtsQpJUJmJw0psy6s3-0-ea4d7f10910f16981daf8a66e82c4091)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040001.jpg?sign=1739415291-mI2qY9EioenwCYKk5ZR6ZnU9r6nQcgQo-0-275113098e9f77be8aae5426c37729b8)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040004.jpg?sign=1739415291-suvhl2bkVwbfgBxO9SIJ0gZadAMFCtvR-0-7abd96e750057ef533670d3a160b481d)
同理可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040005.jpg?sign=1739415291-I6cn5ZldHa40XbKuzcFSjbkssZVL8dmm-0-1b1536cd002a905d26711b9f0ff85320)