![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1739494930-Dgy45ElbUUR0fKze4UdsLPYu3YpJuw1j-0-4f473395c324a34c6537d9aa596de4d5)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1739494930-SvTn9Oj4s9pqOJCRaS7zyWv0cJEkzVQd-0-fc3d0600261011acc8fe7282f6b25488)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1739494930-RGXf2rxKld7aIgcS6daAMPi0xrocgUjG-0-0fed408876b700a38ff9e76472a7893a)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1739494930-6IqeaIyWeJJGBXLPvpudSyyaxDXUboFz-0-c210bbbb36c001774981ece0fa673560)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1739494930-PB18iRlq6d0wOMczDRfPVMSWgrbnqSdK-0-055b311c6529c8150087bd39c9dcabe3)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1739494930-E4waa9vjJRFRLpPjHkAz6Oa1dVpqOQ3Z-0-3bf2704dbbe1fb7fe7a3947ee0868b80)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1739494930-rKLe5WvLV5O0GcJkZKOSF4A9poYb0McU-0-20d7658a2243f7edcf8f69fd093ab89d)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1739494930-mqRRNgckWln5LDSlWc5k0Cwi4OgwMhup-0-61b94ab16ff4c69f8e4564acdeacff9a)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1739494930-aLuxwN1k1af2KzK1Hwow8oO5Z3SQBgaN-0-86241bcb4eb126343a360a466ba8f985)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1739494930-7QuXnIecy1W961IVV16EGdw8mak86t8t-0-e52109e0eb3c33f8115dc06cfbf24b9e)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1739494930-W8mkADgWDLugZX6bOSlOxxO3nRhEz3tI-0-1f45f894b13739391888afc4c0803188)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1739494930-ot2L2juCt5y56a17taErELzjLKOVpFaa-0-36314b89fe010589b69c5c2c56191af1)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1739494930-HpCNvKo5AlGdw7Kho6r0BbZ6VUcvaXCn-0-7a3e70710477976d420516b53269d06b)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1739494930-xfr8UxMoXzYddTfCsQhQPgWlUExs66oj-0-d09ceaa885b9e3d111d1f27e54cac595)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1739494930-3hEMHEXGSFeRvGH2cE9AsNwoLQA3RMsG-0-0c309947e90ee12154d39b0f4cf50b8a)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1739494930-zx4lgczC1qJeVlDn5zrUOCG2BDgTJ4E0-0-ce0ef56f16f11dc91ac06e8a4fcdc403)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1739494930-vVwGtOGcQ46TY6jszpC348tIR7i4iKLm-0-a60b8118dead182dcfbdd3e0d3629896)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1739494930-YQFUrfPYz2ZKPJ6jd5U4kZhXqr07QhBD-0-4f132b99ceed2566963ed001cd13b61c)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1739494930-jx7SlE7oNXyjq0fleW5E8Tkxvzq65yUW-0-a46c1148d6f20f05d88c1ec4355e55da)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1739494930-QPj1SIHPcyzXCWabvvc6wUPuEjTC6D9g-0-37efacd871ac6d5b7c585b64a3ee2199)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1739494930-VuuE6Qli0qWdHkCLc6QfPPu3SC2jR6oV-0-2b734d5d3dd3bfb2883df532d0f618d0)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1739494930-V7iVq7avLEoEuWocdAYwa3b37dmdM4kb-0-922be6faea4f30845edbfa201844510d)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1739494930-QftnwXWOJnjMQEBk0wmFLT6zVJ5cBPhz-0-5613983095a523e7617d0a2ea6108e1b)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1739494930-PLTR9X3OMjlqjMuQYUUFHF5ACNY8Pdjp-0-1e03e4d1ec9d57510e74e7825bf865f8)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1739494930-qCLufx9nnZZpNCZcboN3CD239B4werXV-0-2d9261914faea0a914317cb8b2c39f92)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1739494930-iKZmmWijBqUE4r0rY8ZhY1js1PrDi3NO-0-6a27705767193ec8258ab8bb34f3150a)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1739494930-BsmNMUsTH3Knu9JuS0eJbrNCILizr9m5-0-1747bd0ad4748079d7476185c5327895)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1739494930-31Ras78foYSzCJq0ygvYMzLdf9dVam4N-0-2bfb1e968967bce540d7ab6d020ee05d)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1739494930-sc2AlAxSd7CoTHPkbzzhHgLCylQyqls1-0-b6889813d91eb2ee5763dfc0155d04d8)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1739494930-YL19N4pmzH3Tq9GkzDWouUfibGnMeUz2-0-835f3a8efaa58a80777c82ded86b659b)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1739494930-zT5ftjDP8xINLnmKXDq0lRjNnBYsm5Pt-0-a0502d7a3993614ab47da3729296be2d)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1739494930-m9r7TFp6I6JrkLpVAhcWKU4UCqXgVZxg-0-b93604f505a8bee891f2f6a22d8c880c)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1739494930-WcqN8EjGpD3XmIc7bqHn9Nxm17pjm9Dz-0-0365d3b7a1a7149d3200e8d32886c7eb)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1739494930-xr7k86JzA3l2CmZdqXDzV2s5MgsC79jQ-0-96c1dd55b1c2b0b3d735e1dec71f322c)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1739494930-RbEHhMDSUlYL5hAYjaUgyvudUQndslrp-0-e37691542cc13d4f1afe362f1b5bdbd0)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)